产品目录

服务中心

产品展示

您现在的位置:产品展示 >> 自动化控制 >> 伺服驱动器 >> Rexroth伺服控制器 HAT01.1-002-NNN-NN

Rexroth伺服控制器 HAT01.1-002-NNN-NN

  • 型   号:R911317876
  • 价   格:4850

Rexroth伺服控制器 HAT01.1-002-NNN-NN
公司主营品牌
液压元件:博世力士乐Rexroth,迪普马DUPLOMATIC,阿托斯ATOS,伊顿威格士液压,​派克parker
气动元件:派克parker汉尼汾,爱尔泰克AIRTEC,ASCO世格,安沃驰AVENTICS气动
工控电气:贝加莱B&R工业备件,美国本特利BENTLY,
以上品牌产品都有做,规格齐全报价快,有需要随时联系

分享到:

Rexroth伺服控制器 HAT01.1-002-NNN-NN

一、伺服驱动器简介
伺服驱动器(servo drives)又称为“伺服控制器”、“伺服放大器”,是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位,目前是传动技术的产品。
二、伺服驱动器结构
伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入了软启动电路,以减小启动过程对驱动器的冲击。
三、伺服驱动器的工作原理
首先功率驱动单元通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程,整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。
四、伺服驱动器控制方式
一般伺服都有三种控制方式:位置控制方式、转矩控制方式、速度控制方式。
1、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值,由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
2、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。
应用主要在对材质的手里有严格要求的缠绕和放卷的装置中,例如绕线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。
3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。
五、伺服驱动器控制方式的选择
如果对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。
如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。
如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点,如果本身要求不是很高,或者基本没有实时性的要求,采用位置控制方式。

Rexroth伺服控制器 HAT01.1-002-NNN-NN

R911317876   HAT01.1-002-NNN-NN 
R911346967   HAT02.1-002-NNN-NN 
R911346968   HAT02.1-003-NNN-NN  

R911306620   HAS01.1-050-072-MN 
R911311807   HAS01.1-065-072-CN 
R911306007   HAS01.1-065-NNN-CN 
R911306619   HAS01.1-075-072-MN 
R911306621   HAS01.1-100-072-MN 
R911311808   HAS01.1-105-072-CN 
R911306008   HAS01.1-105-NNN-CN 
R911306664   HAS01.1-125-072-CN 
R911315182   HAS01.1-125-072-MN 
R911306665   HAS01.1-125-NNN-CN 
R911306622   HAS01.1-150-072-MN 
R911316848   HAS01.1-150-NNN-M2 
R911306629   HAS01.1-150-NNN-MN 
R911306623   HAS01.1-175-072-MN 
R911306630   HAS01.1-175-NNN-MN 
R911306624   HAS01.1-200-072-MN 
R911306666   HAS01.1-225-072-CN 
R911306667   HAS01.1-225-NNN-CN 
R911306625   HAS01.1-250-072-MN 
R911306631   HAS01.1-250-NNN-MN  
R911315684   HAS01.1-350-072-CA 
R911306668   HAS01.1-350-072-CN 
R911306626   HAS01.1-350-072-MN 
R911315683   HAS01.1-350-NNN-CA 
R911306669   HAS01.1-350-NNN-CN 
R911306632   HAS01.1-350-NNN-MN 
R911324332   HAS01.1-NNN-NNN-MN  

 

液压伺服系统
液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服控制是复杂的液压控制方式。液压伺服系统是一种闭环液压控制系统。
液压伺服系统结构
输入元件给出输入信号,加于系统的输入端。
反馈测量元件测量系统的输出量,并转换成反馈信号。输入元件和反馈测量元件都可以是机械的,电气的,液压的或其组合。
比较元件将反馈信号与输入信号进行比较,产生偏差信号加于放大装置,该元件一般不单独存在。
系统中输出位移能够复现输入位移的变化,同时它输入的机械量转换成很大的输出力,因此也是一个功率放大装置。
液压伺服系统电气故障诊断方法
当前,液压系统故障诊断是比较难得技术问题,故障表现往往是多种多样的,如何排除液压系统电气故障,这里给大家分享一些办法。
1. 首先深入现场全面了解故障状况,向操作人员询问设备出现故障前后的工作状况和异常现象,了解过去是否发生过类似情况及处理经过。
2. 现场操作观察如果设备仍能动作,并且带病动作不会使故障范围扩大,应当起动设备,操作有关控制机构,观察故障现象及各参数状态的变化,与操作人员提供的情况联系起来进行比较和分析。
3. 查阅技术资料对照本次故障现象,查阅《液压系统工作原理图》(如上文分享)以及《电气控制原理图》,弄清液压系统的构成、故障所在的部位及相关部分的工作原理、液压元件的结构性能及其在伺服系统中的作用以及安装位置。
同时,查阅设备技术档案,看过去是否发生过同类或类似现象的故障,是否发生过与本次故障可能相关联的故障,以及处理的情况,以帮助故障判断。
4. 确诊故障根据工作原理,结合调查了解和自己观察到的现象,作出一个初步的故障判断,然后根据这个判断进行一步的检查与试验,肯定或修正这个判断,直至最后将故障确诊。
5. 修理实施阶段应根据实际情况,本着“先外后内,先调后拆”的原则,制订出修理工作的具体措施和步骤,有条不紊地进行修理
6. 总结经验故障排除后,总结有益的经验和方法,找出防止故障发生的改进措施。
7. 记载归档将本次伺服液压系统故障的发生、判断、排除或修理的全过程详细记载后归入设备技术档案备查

R911309814   HAS05.1-001-NNN-NN 
R911309815   HAS05.1-002-NNN-NN 
R911310209   HAS05.1-003-NNN-NN 
R911312153   HAS05.1-004-NNL-NN 
R911312154   HAS05.1-004-NNR-NN 
R911312808   HAS05.1-005-NNN-NN 
R911327147   HAS05.1-005-NNN-NN-AA 
R911318196   HAS05.1-006-NNN-NN 
R911321502   HAS05.1-007-NNL-NN 
R911319770   HAS05.1-007-NNR-NN 
R911319898   HAS05.1-008-NNN-NN 
R911326569   HAS05.1-010-NHN-NN 
R911323068   HAS05.1-010-NNN-NN 
R911327151   HAS05.1-010-NNN-NN-AA 
R911330568  HAS05.1-011-NNN-NN 
R911334052   HAS05.1-012-NNN-NN 
R911333755   HAS05.1-013-NNN-NN 
R911340518   HAS05.1-014-NNN-NN 
R911340572   HAS05.1-015-NNN-NN 
R911340896   HAS05.1-016-NNN-NN 
R911371165   HAS05.1-018-NNN-NN 
R911372176   HAS05.1-019-NNN-NN 
R911372724   HAS05.1-020-NNN-NN 
R911392277   HAS05.1-021-NCN-NN 
R911374654   HAS05.1-021-NNN-NN 
R911385558   HAS05.1-023-NNN-NN 
R911388417   HAS05.1-024-NNN-NN 
R911402120   HAS05.1-026-NNN-NN  

 

液压控制阀原理
液压控制阀是指液压传动系统或液压控制系统中用来控制液体压力、流量和方向的元件。其中控制压力的称为压力控制阀,控制流量的称为流量控制阀,控制通、断和流向的称为方向控制阀。
液压控制阀(简称液压阀)在液压系统中的功用是通过控制调节液压系统中油液的流向、压力和流量,使执行器及其驱动的工作机构获得所需的运动方向、推力(转矩)及运动速度(转速)等。任何一个液压系统,不论其如何简单,都不能缺少液压阀;同一工艺目的的液压机械设备,通过液压阀的不同组合使用,可以组成油路结构截然不同的多种液压系统方案。因此,液压阀是液压技术中品种与规格最多、应用最广泛部分(元件);一个新设计或正在运转的液压系统,能否按照既定要求正常可靠地运行,在很大程度上取决于其中所采用的各种液压阀的性能优劣及参数匹配是否合理。
液压控制阀分类
1、根据结构形式分类
滑阀: 滑阀为间隙密封,阀芯与阀口存在一定的密封长度,因此滑阀运动存在一个死区。
锥阀:锥阀阀芯半锥角一般为12 °~20 °,阀口关闭时为线密封,密封性能好且动作灵敏。
球阀:性能与锥阀相同。
2、根据控制方式分类
定值或开关控制阀:被控制量为定值的阀类,包括普通控制阀、插装阀、叠加阀。
比例控制阀:被控制量与输入信号成比例连续变化的阀类,包括普通比例阀和带内反馈的电液比例阀。
伺服控制阀:被控制量与(输出与输入之间的)偏差信号成比例连续变化的阀类,包括机液伺服阀和电液伺服阀。
数字控制阀:用数字信息直接控制阀口的启闭,来控制液流的压力、流量、方向的阀类。
3、根据用途分类
压力控制阀:用来控制液压系统中油液压力。
流量控制阀:Ø流量控制阀是通过改变阀口大小来改变液阻实现流量调节的阀。
方向控制阀:在液压系统中控制液流方向。
4、根据安装连接方式分类
管式连接:阀体进出口由螺纹或法兰与油管连接。
板式连接:将进出口开于阀体的一个面。
插装阀:又分为螺纹插装阀和二通或盖板插装阀。
螺纹插装阀:其安装形式为螺纹旋入式的液压执行元件。
二通或盖板插装阀:由插芯为基本组件,插到特别设计加工的阀体内,配以盖板、先导阀组成的一种多功能的复合阀。因每个插装阀基本组件有且只有两个油口,故被称为二通插装阀。
叠加阀:叠加阀以板式阀为基础,每个叠加阀不仅起到单个阀的功能,而且还沟通阀与阀的流道。换向阀安装在最上方,对外连接油口开在最下边的底板上,其他的阀通过螺栓连接在换向阀和底板之间。


留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7